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Abstract. Infinitely many symmetries for a (2+ 1)-dimensional breaking soliton equation 
are constructed via the infinitesimal version of the ‘dressing’ method. These symmetries 
are proved to constitute an infinite-dimensional Lie algebra which contains some Abelian 
and Virasoro subalgebras. The hierarchies of equations generated by these symmetries are 
also considered: these hierarchies of equations are proved to be associated with the 
isospectral and non-isospectral deformations of the AKNS spectral problem. 

1. Introduction 

It is well known that symmetries play an important role in the study of integrable 
nonlinear evolution equations (INEE), such as the KdV equation and KP equation. It has 
been shown that almost all the well-known INEE possess infinitely many symmetries, 
and these symmetries usually constitute some infinite-dimensional Lie algebras [l-61. 
This property of INEE is significant for better understanding of the integrability of 
these equations. The symmetries of an INEE also generate hierarchies of NEE which are 
associated with the isospectral and non-isospectral deformations of certain spectral 
problem, with the given INEE contained in the isospectral hierarchy of equations. 
These hierarchies of NEE are also integrable in the sense that they can be solved via the 
inverse scattering method. 

In this paper, we shall consider the symmetries of the following 
(2 + 1)-dimensional NEE: 

qr=iq,-2iqa;’(qr), (l.la) 

r, = - ir, + 2i~a;’(qr)~ (l.lb) 

This equation is typical of the so-called ‘breaking soliton’ equations, which were 
studied by 0 I Bogoyovlenskii in a series of papers [7,8]. Similar equations were also 
studied in [9]. These breaking soliton equations were used to describe the 
(2 + 1)-dimensional interaction of Riemann wave propagation along the y-axis with 
long-wave propagation along the x-axis. The simplest ‘breaking soliton’ solution of the 
equation (l.l),  for example, can be put into the following form [7,8]: 

(q(x,y, 0, r(x,y, N = ( Q ( x ,  t . I ( y ,  t ) ) ,R(x,  f,Q, 0))  (1.2) 
where for k e d  value of I ( y ,  f), (Q, R) gives a soliton solution for the nonlinear 
Schrodinger equation, while i ( y ,  t )  satisfies the Riemann wave equation. For any 
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fixed initial value of 10.. t ) ,  1(y, r) ultimately ‘breaks’ to be a multi-valued function, 
thus (Q, R) also ‘breaks’ to give a multi-valued solution of the equation (1.1). [ 7 , 8 ]  
presented the Lax pairs and the Hamiltonian structures for these equations, and 
showed that these equations can be solved via the inverse scattering method. [IO] 
showed by using a recursion operator that equation (1.1) possesses an infinite set of 
symmetries, these symmetries constitute an infinite-dimensional Lie algebra. 

In section 2 we shall construct symmetries of equation (1.1) by using the 
infinitesimal version of the ‘dressing’ method; we then show in section 3 that these 
symmetries constitute an infinite-dimensional Lie algebra, which contains some 
Abelian and Viarasoro subalgebras. In particular we show that the symmetry algebra 
constructed in [lo] is only a subalgebra of the present algebra. In section 4 we shall 
consider the hierarchies of equations generated by these symmetries. These hier- 
archies of equations are proved to be associated vrith the isospectral and non- 
isospectral deformations of the well known AKNS spectral problem. 

Yi-Shen Li and You+ Zhang 

2. Symmetries of equation (1.1) 

In this section, we shall construct the symmetries of (1.1) by using the infinitesimal 
version of the ‘dressing’ method [SI. Equation (1.1) has the following Lax pair: 

*x = M* (2.la) 
*,=ZWY + Nly (2.16) 

where 

and 

& = O  5, = my. 
Equation (1.1) is then equivalent to the following compatibility condition of equations 
(2.1~) and (2,lb): 

M,- N,  - [N, MI -2&Vfy= 0 (2.2) 
where [ A , B ] = A B - B A  for two operators A,B. Since it does not influence our 
construction of symmetries of (1. l), we assume for simplicity in this section that Ey = 0. 
When c y # O ,  we can also apply the following approach to construct symmetries of 
(l . l) ,  and the result is the same. 

To construct symmetries of (1.1) by using the infinitesimal version of the ‘dressing’ 
method [4], we give the eigenfunction r/r an infinitesimal ‘dressing’; q~+(l+&d,y)W, 
where 6,y is an appropriate operator, and E is an infinitesimal parameter. Then, M and 
N also have an infinitesimal change: M - M + d M ,  N - N +  e6N. From equations 
(2,la) and ( 2 3 )  we have 

6M =[ax- M ,  6x1 (2.3~) 

6 N = W 7  51ay+ [%, N I +  (6x),-26(6~)~. (2.36) 
t ] = O ,  then 6 M , 6 N  defined by (2.3~) and A direct calculation shows that if 
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(2.36) satisfy the following linearized equation of (2.2): 

( S M ) , - ( d N ) , - [ d N , M ] - [ N ,  SM]-25(6M) ,=O.  (2.4) 
So, if we can find operator 6~ such that 6M and 6N have the following form: 

(2.5) 
- id;I(qSr + rdq), 

- i(Sr), 

where 6q, 6r are scalar functions and independent of the spectral parameter E ,  then 
(6q, Sr) is a solution of the Linearized equation of ( l . l ) ,  thus (Sq ,  Sr) is a symmetry of 
(1.1). 

Motivated by the above, we now consider the following three types of Sx: 

k>O n * k + l  I =  1 , 2 .  (2.8) 
We note that if we substitute the above 6% into equations ( 2 . 3 ~ )  and (2.36), then we 
find that the operator terms of the right-hand sides of these equations vanish. In what 
follows we always assume that we choose integral constants to be zero, and 

We first consider 6% given in (2.6).  From the requirement that 6M satisfies the 
condition (2.5),  we find that equation ( 2 . 3 ~ )  is equivalent to the following relations: 

i i 
B 1 = - - r y  Cl'+ 2 

Ko=O Kl  = 4N 

where 

(2.10) 

and X; is uniquely determined by equation ( 2 . 3 ~ )  up to integral constants. 
When n = O  it is easy to prove that 6% also satisfies equation (2.36) with SN 

defined by (2.5), so ( S q , 6 r ) = ( q y , r y )  is a symmetry of equation (1.1).  For rial, 
instead of proving that the above 6x. also satisfies equation (2.36) with 6N defined by 
(2.5) and 6q, 6r defined by (2.9),  we adopt the following more convenient way to 
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prove that (dq, br) is a symmetry of equation (1.1). It is not hard to prove that the 
operator @ defined by (2.10) is a strong symmetry for equation ( U ) ,  so from [ l l ]  we 
know that (dq, dr) defined by (2.9) is asymmetry of equation (1.1). We denote this 

Yi-Shen Li and You-jin Zhang 

symmetry by rn. 
Secondly, we consider 6 ~ ;  given in (2.7). Substitute this 6x into equation (2.3a); 

we know that K, can be uniquely determined under our assumption of integral 
constants and by our requirement that dM satisfies the condition (2.5). In this way, 
from bA we obtain a unique pair of (dq, dr) which we denote by 7;. For example, 
when k = 0 we have 

(2.11) 

Similar to the first case, we can prove that 7: is a symmetry of equation (1.1) for n a 1. 
We now claim in general that r: for k 2  1, n > k + 1 is also a symmetry of equation 
(1.1); this fact wiU be proved in the next section. 

Third, we consider ax:,',' given in (2.8). Substitute this dxinto equation ( 2 . 3 ~ ) ;  we 
find that K, can be uniquely determined under our assumption of integral constants 
and by our requiremot that dM satisfies the condition (2.5). We denote the (dq, 6 r )  
obtained from S$,' by r;;','. For example, when k=O, 1=2 we have 

KO=(" 0 -Lc ) .=( O - x q  ) (;Yj=-( 1 - ( x d r + Y q ,  ) 
- xr 2i - (xr), + yr, 

When k=l, I = 1  we have 

f2q7-2irtq 
- ixf - t2ry - 2ixe xy + r2a;'(qr), 

Az=f[Zixfqr+2if~;'(qr) + tZa;'(qr,-qvr)] (2.13) 

Then, similar to the second case, we can prove that 7:,,r!,,( are symmetries of 
equation (1.1) for n Z 1 ,  I= 1,2, and we claim in general that r:,! is also a symmetry 
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for k > l ,  n > k +  1, I=  1,2, this fact will also be proved in the next section. 
So, in this section we have constructed infinitely many symmetries rn(n>O), 

zi(n k + 1, k >  0), rt'J1(k> 0, n > k  + 1, I = 1,2) for equation (1.1). We note that the 
symmetries constructed in [9] correspond to r,, r:, r: , ,  (I = 1,2). In the next secton we 
shall consider the algebraic structure of these symmetries. 

3. Algebraic structure of the symmetries of equation (1.1) 

In this section, we shall consider the algebraic structure of the symmetries of equation 
(1 . l)  constructed in section 2. For two symmetries of equation (1.1) r and U ,  we define 
their commutator as follows: 

{z, u}=r'[u] - u p ]  (3.1) 
where 

a 
r'[u]=lim -T (U+EU)  a& w = (q, r) 

is the Gateaux derivative of r in the direction of U. Then it is well known that {r,  U} is 
also a symmetry of equation (l . l) ,  and {,}is a Lie bracket. 

We first calculate {rn, rJ for n,  m3O. We denote 6M corresponding to the 6% by 
SM,. Then by our definition we have 

@M", 6MmJ = (6Mn)",1 - (6%)' [6MJ 

=[-M'[aMmI) Sxnl+ [ a x - M ,  (6~J'[6Mmll 

-[-Mf[6M,1, s X m l - P , - M ,  (6xm)'[6M,ll 
= [a,- M ,  (bm)' [6Mm1 - (6x3' [6M.1+ [dxm sxml1. 

The operator (6%)' [6Mm] - (axm)' [6MJ + [dm, Sxm] has the form Z;Z;-' K, and it is 
easy to see that the leading terms KO, K ,  are zero. This operator satisfies equation 
(2.3~) with 6 M  defined by (6M., 6MA. Since equation (2.3~) uniquely determines Ki 
up to integral constants, we know from our assumption on integral constants that this 
operator just equals zero. Thus we have (6M,, SM,}=O, which we also write as 

b", rml=O. (3.2) 
Since r: and ti. I are symmetries of equation (l.l),  similar to the above calculation we 
have 

{r!.ri,S= -nrL+l. (3.3) 
Thus we have proved that r;  is also a symmetry of equation (1.1) for n>2. We then 
calculate {ri ,  &}, which turns out to be (3-n)r i+1 .  So r: is a symmetry of equation 
(1.1) for n 3. In this way, we can prove step by step that r i  is a symmetry of equation 
( l . l ) fo ranyk>O,n>k+l .  Similartothe aboveargument, wecanprovethat r::'is 
a symmetry for any k 3 0, n 3 k + 1 and I = 1.2, this fact can also be seen more clearly 
from the following commutation relations of the symmetries of equation (1.1): 



j-’ 1 (3.5) 

( 3 4  

m Z f + 1  (3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

k , b O  n > k + l  m > l + l .  (3.12) 

The derivation of the commutation relations (3.4)-(3.12) is similar to that of the 
commutation relation (3.2), so we omit it here. 

From relations (3.2)-(3.12) we see that the symmetries of equation (1.1) con- 
structed in section 2 form a basis of an infinite-dimensional Lie algebra under the Lie 
bracket { ,}, and this Lie algebra contains some Abelian subalgebras and Virasoro 
subalgebras (without centre). This properly is commonly shared by almost all the well 
known (1 + 1)-dimensional and (2+ 1)-dimensional soliton equations. 

Remark I. We see from relations (3.2)-(3.12) that the above infinitedimensional Lie 
algebra is generated by the symmetries s., r:, r b l ,  z:.~ @SO, mz-1, I =  1.2). 

Remark 2. From [2,4] we know that the symmetries of the (2 + 1)-dimensional w 
equation are indexed by two integers, so it seems to us that the symmetry algebra of 
equation (1.1) is bigger than that of the KP equation, this may also suggests some 
differences between the usual (2C 1)-dimensional soliton equations and the 
(2 + l)-dimensional braking soliton equation (1.1). 

k+1 I t 1  
b , , 2  (m--n)r!E21,2 

4. Isospectral and non-isospectral hierarchies of equations 

In this section we consider the hierarchies of equations generated by the symmetries 
of equation (1.1) constructed in section 2. We denote 6q and 6rcorresponding to the 
symmetry rm by dq. and dr,, respectively; similarly we define bq;, br:, dq:.;’, 6r;:‘. 
Then the hierarchies of equations are given as follows: 

(4.1) 

(4.2) 
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(4.3) 

When n = 1, equation (4.2) is equivalent to equation (Ll), and the flows given by 
equations (4.1) and (4.2) are mutually commutative. When k=O, the hierarchy of 
equations given in (4.2) is just the usual Kdv hierarchy. It is easy to see from equation 
(2.3~) and conditon (2.5) that equation (4.1) has the following Lax pair: 

*z = MV *r"=&tw (4.4) 

& = O  5, = Pty (4.5) 

** = MY, *t i  = sx:w (4.6) 

& = O  = 0 (4.7) 

where M is given in (2.1), satisfies 

and 6% is given by (2.6). Equation (4.2) has the following Lax pair: 

where 

and 6 ~ ;  is given by (2.7). The Lax pair of equation (4.3) is given by 

ly, = Mut (4.8~) 
I " 

where Kj is given in (2.8), and 5 satisfies 

Ez=O 

The Lax pairs (4.6) and (4.8) are also derived from equation (2.3~) and condition 
(2.5). 

From the above Lax representations of the equations (4.1)-(4.3), we see that the 
hierarchy of equations given in (4.2) corresponds to the isospectral deformation of the 
spectral problem ly, = My, which is the well known AKNS spectral problem, whereas 
the hierarchies of equations given in (4.1) and (4.3) correspond to the non-isospectral 
deformation of the same spectral problem. So these equations can be solved by using 
the inverse scattering method on the AKNS spectral problem; the evolution of the 
scattering data can be evaluated from equations (4.4), (4.6) and (4.8b). 

€&+I - 1 . 1  = (Et+ +y))*[ - 2 t P  + zg"-yEt++y)lEy - P " E t +  +yy.  (4.9) 

5. Conclusion 

We have constructed infinitely many symmetries for the (2 + I)-dimensional breaking 
soliton equation (Ll), these symmetries are proved to constitute an inhite- 
dimensional Lie algebra with some Abelian and Virasoro subalgebras. This symmetry 
algebra seems to be bigger than that of the usual (2+ 1)-dimensional soliton equa- 
tions, such as the KP equation. This fact may help us to understand the differences 
between the usual (2 + 1)-dimensional soliton equations and the (2 + 1)-dimensional 
breaking soliton equations. We have also considered the hierarchies of equations 
generated by these symmetries; they correspond to the isospectral and non-isospectral 
deformations of the well-known AKNS spectral problem. Similar results can also be 
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obtained for other (2+ 1)-dimensional breaking soliton equations given in [7,8], such 
as the following (2  + 1)-dimensional breaking soliton equation: 

Yi-Shen Li and You-jin Zhang 

U, = 4 4  uxy i- 2uy U, - umy 

details will be given elsewhere. 
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